Copied to
clipboard

G = C4xC52:C4order 400 = 24·52

Direct product of C4 and C52:C4

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C4xC52:C4, C20:4F5, C52:7C42, C5:3(C4xF5), (C5xC20):8C4, C52:6C4:8C4, C10.23(C2xF5), C5:D5.9(C2xC4), (C4xC5:D5).13C2, C2.2(C2xC52:C4), (C5xC10).36(C2xC4), (C2xC52:C4).7C2, (C2xC5:D5).24C22, SmallGroup(400,158)

Series: Derived Chief Lower central Upper central

C1C52 — C4xC52:C4
C1C5C52C5:D5C2xC5:D5C2xC52:C4 — C4xC52:C4
C52 — C4xC52:C4
C1C4

Generators and relations for C4xC52:C4
 G = < a,b,c,d | a4=b5=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b2, dcd-1=c3 >

Subgroups: 556 in 76 conjugacy classes, 24 normal (10 characteristic)
C1, C2, C2, C4, C4, C22, C5, C5, C2xC4, D5, C10, C10, C42, Dic5, C20, C20, F5, D10, C52, C4xD5, C2xF5, C5:D5, C5xC10, C4xF5, C52:6C4, C5xC20, C52:C4, C2xC5:D5, C4xC5:D5, C2xC52:C4, C4xC52:C4
Quotients: C1, C2, C4, C22, C2xC4, C42, F5, C2xF5, C4xF5, C52:C4, C2xC52:C4, C4xC52:C4

Smallest permutation representation of C4xC52:C4
On 40 points
Generators in S40
(1 19 9 14)(2 20 10 15)(3 16 6 11)(4 17 7 12)(5 18 8 13)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 3 5 2 4)(6 8 10 7 9)(11 13 15 12 14)(16 18 20 17 19)(21 24 22 25 23)(26 29 27 30 28)(31 34 32 35 33)(36 39 37 40 38)
(1 33)(2 31 5 35)(3 34 4 32)(6 39 7 37)(8 40 10 36)(9 38)(11 29 12 27)(13 30 15 26)(14 28)(16 24 17 22)(18 25 20 21)(19 23)

G:=sub<Sym(40)| (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,3,5,2,4)(6,8,10,7,9)(11,13,15,12,14)(16,18,20,17,19)(21,24,22,25,23)(26,29,27,30,28)(31,34,32,35,33)(36,39,37,40,38), (1,33)(2,31,5,35)(3,34,4,32)(6,39,7,37)(8,40,10,36)(9,38)(11,29,12,27)(13,30,15,26)(14,28)(16,24,17,22)(18,25,20,21)(19,23)>;

G:=Group( (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,3,5,2,4)(6,8,10,7,9)(11,13,15,12,14)(16,18,20,17,19)(21,24,22,25,23)(26,29,27,30,28)(31,34,32,35,33)(36,39,37,40,38), (1,33)(2,31,5,35)(3,34,4,32)(6,39,7,37)(8,40,10,36)(9,38)(11,29,12,27)(13,30,15,26)(14,28)(16,24,17,22)(18,25,20,21)(19,23) );

G=PermutationGroup([[(1,19,9,14),(2,20,10,15),(3,16,6,11),(4,17,7,12),(5,18,8,13),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,3,5,2,4),(6,8,10,7,9),(11,13,15,12,14),(16,18,20,17,19),(21,24,22,25,23),(26,29,27,30,28),(31,34,32,35,33),(36,39,37,40,38)], [(1,33),(2,31,5,35),(3,34,4,32),(6,39,7,37),(8,40,10,36),(9,38),(11,29,12,27),(13,30,15,26),(14,28),(16,24,17,22),(18,25,20,21),(19,23)]])

40 conjugacy classes

class 1 2A2B2C4A4B4C···4L5A···5F10A···10F20A···20L
order1222444···45···510···1020···20
size1125251125···254···44···44···4

40 irreducible representations

dim111111444444
type+++++++
imageC1C2C2C4C4C4F5C2xF5C4xF5C52:C4C2xC52:C4C4xC52:C4
kernelC4xC52:C4C4xC5:D5C2xC52:C4C52:6C4C5xC20C52:C4C20C10C5C4C2C1
# reps112228224448

Matrix representation of C4xC52:C4 in GL4(F41) generated by

9000
0900
0090
0009
,
0100
40600
003535
00640
,
40600
353500
00640
0010
,
0090
0009
32000
28900
G:=sub<GL(4,GF(41))| [9,0,0,0,0,9,0,0,0,0,9,0,0,0,0,9],[0,40,0,0,1,6,0,0,0,0,35,6,0,0,35,40],[40,35,0,0,6,35,0,0,0,0,6,1,0,0,40,0],[0,0,32,28,0,0,0,9,9,0,0,0,0,9,0,0] >;

C4xC52:C4 in GAP, Magma, Sage, TeX

C_4\times C_5^2\rtimes C_4
% in TeX

G:=Group("C4xC5^2:C4");
// GroupNames label

G:=SmallGroup(400,158);
// by ID

G=gap.SmallGroup(400,158);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,55,1444,496,5765,2897]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^5=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^2,d*c*d^-1=c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<